Physics 10-03 Sound No.	Name:	
Iow Sound Is Made		
Some object like a speaker moves and the air		VVWWVv _{Sli}
Air pressure rises called	Wavele	ength = λ
Condensation moves at speed of	л	
Object moves back creating air pressure called		
Rarefaction moves at speed of		V
Particles move and		
 Particles move and Distance between consecutive condensations or rarefactions is 		
Distance between consecutive condensations of farefactions is		J-Dian
String or speaker makes air vibrate		a state and
 String of speaker makes an vibrate That molecule pushes the one to vibrate and so on 		
-	$\Theta \Theta \Theta \Theta \Theta$	
When it the ear, the are interpreted as		4 16
Pitch		
• I cycle = 1 + 1 of an i	ration ndividual	
$Frequency = \frac{cycles}{second}$	nolecule	
Each frequency has own	Table 17.1 Speed	t of Sound in
• Sounds with 1 frequency called	Various Media	101 Sound in
Healthy people can hear frequencies of to Hz	Medium	v _w (m/s)
Brain can interpret frequency as	Gases at 0°C	
 High freq = pitch 	Air	331
 High freq = pitch because most people don't have pitch 	Air Carbon dioxide	331 259
• because most people don't have pitch		
• because most people don't have pitch	Carbon dioxide	259
 because most people don't have pitch 	Carbon dioxide Oxygen	259 316
• because most people don't have pitch Loudness	Carbon dioxide Oxygen Helium	259 316 965 1290
because most people don't have pitch Loudness The condensations have more than the rarefactions	Carbon dioxide Oxygen Helium Hydrogen	259 316 965 1290
 because most people don't have pitch Loudness The condensations have more than the rarefactions Amplitude = pressure 	Carbon dioxide Oxygen Helium Hydrogen Liquids at 20°C	259 316 965 1290
 because most people don't have pitch Loudness The condensations have more than the rarefactions Amplitude = pressure Typical conversation, Amp = Pa 	Carbon dioxide Oxygen Helium Hydrogen Liquids at 20°C Ethanol	259 316 965 1290 7 1160
 because most people don't have pitch Loudness The condensations have more than the rarefactions Amplitude = pressure Typical conversation, Amp = Pa Atmospheric air pressure = Pa is ear's interpretation of amplitude 	Carbon dioxide Oxygen Helium Hydrogen Liquids at 20°C Ethanol Mercury	259 316 965 1290 1160 1450
 because most people don't have pitch Loudness The condensations have more than the rarefactions Amplitude = pressure Typical conversation, Amp = Pa Atmospheric air pressure = Pa is ear's interpretation of amplitude 	Carbon dioxide Oxygen Helium Hydrogen Liquids at 20°C Ethanol Mercury Water, fresh	259 316 965 1290 1160 1450 1480
 because most people don't have pitch Loudness The condensations have more than the rarefactions Amplitude = pressure Typical conversation, Amp = Pa Atmospheric air pressure = Pa is ear's interpretation of amplitude Speed of Sound	Carbon dioxide Oxygen Helium Hydrogen Liquids at 20°C Ethanol Mercury Water, fresh Sea water	259 316 965 1290 1160 1450 1480 1540 1540
 because most people don't have pitch Loudness The condensations have more than the rarefactions Amplitude = pressure Typical conversation, Amp = Pa Atmospheric air pressure = Pa is ear's interpretation of amplitude Speed of Sound For waves 	Carbon dioxide Oxygen Helium Hydrogen Liquids at 20°C Ethanol Mercury Water, fresh Sea water Human tissue	259 316 965 1290 1160 1450 1480 1540 1540 1540
• because most people don't have pitch Loudness • The condensations have more than the rarefactions • Amplitude = pressure • Typical conversation, Amp = Pa • Atmospheric air pressure = Pa • is ear's interpretation of amplitude Speed of Sound • For waves $v_w = f\lambda$	Carbon dioxide Oxygen Helium Hydrogen Liquids at 20°C Ethanol Mercury Water, fresh Sea water Human tissue Solids (longitud	259 316 965 1290 1160 1450 1480 1540 1540
• because most people don't have pitch Loudness The condensations have more than the rarefactions Amplitude = pressure Typical conversation, Amp = Pa Atmospheric air pressure = Pa Atmospheric air pressure = Pa Speed of Sound For waves $v_w = f\lambda$ Sound travels slowest in, faster in, and fastest in	Carbon dioxide Oxygen Helium Hydrogen Liquids at 20°C Ethanol Mercury Water, fresh Sea water Human tissue Solids (longitud Vulcanized rubbe	259 316 965 1290 1160 1450 1480 1540 1540 1540 <i>1540</i>
• because most people don't have pitch Loudness • The condensations have more than the rarefactions • Amplitude = pressure • Typical conversation, Amp = Pa • Atmospheric air pressure = Pa • is ear's interpretation of amplitude Speed of Sound • For waves $v_w = f\lambda$	Carbon dioxide Oxygen Helium Hydrogen Liquids at 20°C Ethanol Mercury Water, fresh Sea water Human tissue Solids (longitud Vulcanized rubbe Polyethylene	259 316 965 1290 1160 1450 1450 1540 1540 1540 <i>inal or bulk)</i> er 54 920
• because most people don't have pitch Loudness • The condensations have more than the rarefactions • Amplitude = pressure • Typical conversation, Amp = Pa • Atmospheric air pressure = Pa • is ear's interpretation of amplitude Speed of Sound • For waves $v_w = f\lambda$ • Sound travels slowest in, faster in, and fastest in	Carbon dioxide Oxygen Helium Hydrogen Liquids at 20°C Ethanol Mercury Water, fresh Sea water Human tissue Solids (longitud Vulcanized rubbe Polyethylene Marble	259 316 965 1290 1160 1450 1480 1540 1540 1540 1540 8 <i>i</i> 54 920 3810
• because most people don't have pitch Loudness • The condensations have more than the rarefactions • Amplitude = pressure • Typical conversation, Amp = Pa • Atmospheric air pressure = Pa • is ear's interpretation of amplitude Speed of Sound • For waves $v_w = f\lambda$ • Sound travels slowest in, faster in, and fastest in	Carbon dioxide Oxygen Helium Hydrogen Liquids at 20°C Ethanol Mercury Water, fresh Sea water Human tissue Solids (longitud Vulcanized rubbe Polyethylene Marble Glass, Pyrex	259 316 965 1290 1450 1450 1480 1540 1540 1540 1540 1540 1540 1540 154

Physics 10-03 Sound Name: _____ Practice Work _____

- 1. When sound passes from one medium to another where its propagation speed is different, does its frequency or wavelength change? Explain your answer briefly.
- 2. A loudspeaker produces a sound wave. Does the wavelength of the sound increase, decrease, or remain the same, when the wave travels from air into water? Justify your answer.
- 3. When poked by a spear, an operatic soprano lets out a 1200-Hz shriek. What is its wavelength if the speed of sound is 345 m/s? (OpenStax 17.1) **0.288 m**
- 4. What frequency sound has a 0.10-m wavelength when the speed of sound is 340 m/s? (OpenStax 17.2) 3400 Hz
- 5. Calculate the speed of sound on a day when a 1500 Hz frequency has a wavelength of 0.221 m. (OpenStax 17.3) **332 m/s**
- 6. (a) What is the speed of sound in a medium where a 100-kHz frequency produces a 5.96-cm wavelength? (b) Which substance in the table is this likely to be? (OpenStax 17.4) **5.96** × **10**³ **m/s, steel**
- 7. Dolphins make sounds in air and water. What is the ratio of the wavelength of a sound in air to its wavelength in seawater? Assume air temperature is 20.0 °C. (OpenStax 17.7) **0.223**
- 8. A sonar echo returns to a submarine 1.20 s after being emitted. What is the distance to the object creating the echo? (Assume that the submarine is in the ocean, not in fresh water.) (OpenStax 17.8) **924 m**
- 9. (a) If a submarine's sonar can measure echo times with a precision of 0.0100 s, what is the smallest difference in distances it can detect? (Assume that the submarine is in the ocean, not in fresh water.) (b) Discuss the limits this time resolution imposes on the ability of the sonar system to detect the size and shape of the object creating the echo. (OpenStax 17.9)
 7.70 m
- 10. For research purposes a sonic buoy is tethered to the ocean floor and emits an infrasonic pulse of sound. The period of this sound is 71 ms. Determine the wavelength of the sound. (Cutnell 16.30) **110 m**
- 11. The distance between a loudspeaker and the left ear of a listener is 2.70 m. (a) Calculate the time required for sound to travel this distance if the air temperature is 20 °C. (b) Assuming that the sound frequency is 523 Hz, how many wavelengths of sound are contained in this distance? (Cutnell 16.31) 7.87×10^{-3} s, 4.12